
CS 595: Cryptography
Final Project

Tim Wylie

December 7, 2009

Project Overview

I have implemented a basic covert multi-party communication instant mes-
saging program. The users can communicate with any other user, but com-
munication is a two-way channel only. The program makes use of the concept
of covert two-party computation1 and steganographic4 methods of commu-
nication if the SFE (secure function evaluation of the computation) has re-
turned true for both parties.

The implementation itself took quite a while, and therefore there is a
section covering the basic usage of the application. There are also sections
describing issues with the implementation and future developments if the
application were to be continued to be worked on for daily use.

Cryptographic Backend

As in standard two-party computation, Alice and Bob have secret inputs xA

and xB and they desire to compute a function f(xA, xB), the difference is
that neither Alice nor Bob know if the other person wants to compute the
function, and they won’t find out unless both choose to run the computation
and the outcome is true. The function f in my program is simply

f(xA, xB) =

{
1, if xA = xB

0, if xA 6= xB

This function could be easily extended to calculate some group public key
given two private keys or something similar that is secure other than just
comparing the group name input.

1

This is a binding commitment scheme as well since once a ”check” is
issued on the client’s side, it cannot be changed. There is, however, the
ability to check multiple groups against the same user. Ideally, there should
be a guarantee that the user is actually a memeber of that group via some
key scheme as mentioned above. This might seem to imply that if you check a
user against all groups, you gain some knowledge about that user if only one
group check returns true. This is not the case though. Alice may check all
of her groups against Bob, but Bob may only check one of his against Alice.
Also, a communication is only allowed and the client notified the result was
true if the client has his group set to that. So if Bob checks group 1,2,3
against Alice, and Alice checks group 1,2,3 against Bob the result would be
True for all three groups, but if Bob has his group set to 1 and Alice has hers
on 3, they will still not be able to communicate because they have essentially
changed xA and xB after a submission to f(xA, xB). Basically, the program
checks that the output of f(xA, xB) is contingent on xA and xB.

This sort of contingency was not mentioned in the paper1, but is a neces-
sity when dealing with two-way covert computation where several computa-
tions are attempted at once. In this example, should Alice change her group
to 1, then they would be notified and the computation would have been a
success.

The idea of using steganography is well known for secretly sending data,
and has been proven that it can be done securely4. The encryption algo-
rithm used in this application is ARC2, and then the protocol described in
RFC17515 is used in order to translate the bytes into readable ASCII charac-
ters before they’re hidden within the image. The reason for this translation
is because the python steganography library that I used only accepts ASCII
characters to be encoded. The key is simply the group name which is not the
most secure, but given that you can only communicate should both parties
be members of the same group covertly, it is sufficient for this application.

2

Application

Overview

In order to run the application, the server must first be running.
$python covert server.py
Then as many clients as desired can be started.
$python covert client.py

The user connects by starting the ”Connect” dialog under the ”File”
menu. Although there is the option for changing the port, it is hardcoded in
the server, so it shouldn’t be changed. The available users are listed at the
bottom of the server(this issue is mentioned in the ”Issues” section). They
are user1, user2, user3, and user4 with passwords a, b, c, and d respectively.
The avatar is optional, but if chosen will show up in the sidebar along with
the user names.

In order to send a message the client must select another user in the side
bar and then a message or emoticon can be sent. GUI emoticons must be
added via the ”Send” menu.

By default there are no groups. A client must add a group via the ”Add
Group” dialog. The new group is not selected by default though and the
client has to change to it under the ”Group” menu. In order to be covert
with another user, the client should have his new group selected, highlight
another user, then click ”Check User” under the ”Group” menu. If the other
user similarly checks that group the status bar will tell you that you are
covert with them. If the client is covert with another user and sends an
emoticon, an ”Embed” dialog will pop up where he can type into the text
box and click ”OK”. That message will then be encrypted, translated, and
hidden within the emoticon. The other user will receive the emoticon and a
message box will pop up with the secret message.

Technologies

The application is written in python, and other technologies were chosen
based on this. The Twisted6 network framework was used for the network
communication. This allows for single-threaded high-volume asynchronous
networking. Within the Twisted framework, Perspective Broker was used
for communication and authentication. This allows for the client to call
remote functions on the server as if they were local. This gets rid of the
need for defining a networking protocol and parsing incoming strings. The
authentication is also secure and hidden during this process.

The steganography library used was Stepic8. It is written in python

3

and can be downloaded and imported into the project without installing.
The library is very easy to use, but has one drawback: there is no native
encryption or passwords used. Anyone with the image can call the decode
function and get the results. This means that an adversary could simply try
to decode every image until he found one that returned without an error.
This is why separate encryption algorithms were also used. If someone does
decode the image, the will not be able to decode the message.

The python libarary that was used for the encryption was the Python
Cryptography Toolkit7. Specifically, the ARC2 encryption algorithm was
used. This was chosen because it allows variable length keys and was rather
easy to include. As mentioned above the RFC1751 protocol was also used
from PyCrypto in order to translate the bits into ASCII so that Stepic could
encode the text.

Dependencies

• Python interpreter

• Twisted Framework - http://www.twistedmatrix.com

• The Python Cryptography Toolkit - http://www.dlitz.net/software/pycrypto/

• Stepic Library - http://domnit.org/stepic/doc/

• pyGTK - This is the cross-platform GTK GUI toolkit with python
bindings.

Issues

Several shortcuts were taken since this was merely a proof-of-concept appli-
cation. None of them hinder the functionality, but before any sort of extreme
use these should be addressed.

The clients that log in must be authenticated, however, since I did not
want to tie the application to a database an in-memory user list is used. This
means that any new users must be added to the server before the server is
started. The users are declared at the bottom of the server script.

Emoticons are sent by themselves rather than inline with other text. This
has to do with parsing out images within a text buffer in order to display
them. You have to search through a text buffer and find certain bytes, then
copy the image data out and insert it as a pixbuf rather than text. Due
simply to the amount of time already put into the application, this issue was
simply not worth solving.

4

When emoticons are sent, they no longer have transparency, but instead
have a white background. The steganography library Stepic makes no dis-
tinction between images with or without transparency, so when it encodes a
message within an image with transparency the output image is completely
scrambled and looks like noise. Since we’re hiding data this is unacceptable.
I kept the transparent ones within the menu since they look nice, and ideally
a library that can handle them should be used, but I did not find one with
python bindings and did not want to waste anymore time finding one.

As mentioned above, Stepic returns the text if it finds any. Ideally a
library would be used that would only return text given some encryption
and passphrase used for the data hiding. This way an adversary would have
no way of knowing whether or not information was hidden at all.

The selected user becomes unhighlighted occasionally. This is because
every 20 seconds the client checks to get the user list. When the list is
reloaded, the application does not save which user was selected. This was
again not fixed due to time constraints.

Occasionally, when you check a user for a group that has previously been
covert with the checker, the user automatically gains covert status with the
other user. This is simply because sometimes when a user logs out and logs
back in later, the records were not correctly deleted on the server. This
persistence shouldn’t happen, but occasionally does.

Hitting ”Enter” doesn’t send the message. It should, but I did not im-
plement that or other common shortcuts.

The password text field is not obscured. This is simply an option I didn’t
see when I was building the dialog. This should be an easy fix with an
understanding of gtk development.

Future Developments

There are a few developments that could have also been issues, but I chose to
put them here because they were intentional limited features. It is assumed
that all items in the ”Issues” section should also be addressed in future
developments.

The encryption scheme should be selectable upon group creation. This
would not have been that hard to implement, but I was overrun with the
amount of stuff that needed to be implemented. The ”Add Group” dialog
should have a combo box that lets the client select which type of encryption
scheme to use and lets him specify the key rather than just using the group
name. This would also mean that the inputs xA, xB each consist of the group
name, the encryption used, and the passphrase.

5

Public Key Encryption could also be easily added by encoding your public
key within your avatar. Then for each covert message received, after it has
been decoded from the image, the other user’s avatar can be decoded to get
their public key. This allows for a PK encryption scheme to be used without
it being explicitly used from the perspective of other users. In fact, the PK
can be constantly changing because a user can update their avatar and it
will propogate seamlessly to all other users.

Making the application P2P would make it more relevant to being covert.
This would not be that difficult overall, but again because of time, a simple
client/server model was much faster to build. Having a P2P client would
make it easy for a client to create his own function f(which is part of the
next point).

Using another function for the covert computation would be interesting.
Maybe something like the millionaire problem, where Alice only wants to be
covert with those that have less money than her, but Bob only wants to be
covert with users wealthier than him so he can be ”in” with a better crowd.
The paper mentions a dating application where the users ”like” each other
and similarly, in this application they then could send secret love messages
between themselves if they both ”like” each other. Maybe a situation where
I want to get support like AA, but I don’t want all of my friends to know
that I need help. I can check for other users who are looking for a ”secret”
support group.

Usually, instant messaging application use text emoticons and replace
them with the graphic rather than actually sending the graphic. This should
probably work the same to avoid all the extra overhead. Maybe the applica-
tion can simply allow sending picture files like over IM applications, but also
give the user the embedded text option. This would be much less suspicious
and more practical. Plus, if an adversary is watching the line, they could
see the same emoticon several times with different minor bits. They would
then know that the two users are using steganography in order to secretly
communicate. If emoticons were used normally, but pictures were just being
sent, an adversary would not have another version to compare the image to.

The server is very simplistic in handling messages and users. This was
purposeful so that translating the program to a P2P structure would not be
that difficult in the future. If the client/server model is going to continue to
be used without a P2P structure though, a more advanced framework should
be developed.

There is no ability to save conversations or to re-read a covert message by
selecting an emoticon. This ability would be a nice feature, but in a secret
conversation, it may also be good that it is not possible.

6

Conclusion

I believe that this software does a good job of providing a facility to do covert
two-party computation while giving a useful application for the technology
when combined with some other cryptographic tools. If the improvements
were made that were suggested above, the application could be incredibly
useful in a single package. Similar concepts could be employed other ways
using other separate applications. If another application existed for the covert
computation, the users could then log on to any instant messenger, use a
separate tool to embed messages in an image, and send it to each other
through the other service.

My software shows how these separate tools can be combined in a useful
way that give it unique properties and applications the tools would not have
had otherwise.

7

References

1. von Ahn, L., Hopper, N., and Langford, J. 2005. Covert two-party
computation. In Proceedings of the Thirty-Seventh Annual ACM Sym-
posium on theory of Computing (Baltimore, MD, USA, May 22 - 24,
2005). STOC ’05. ACM, New York, NY, 513-522.
DOI= http://doi.acm.org/10.1145/1060590.1060668

2. Anguraj S., Balamurugan D. 2009. Implementation of Audio Steganog-
raphy in Real-Time Protocol(RTP) and Hypothesis of RTP Features.
1st National Conference on Intelligent Electrical Systems (NCIES09),
24-25 April 2009, Maha College of Engineering, Salem, India.

3. Bayer, P., Widenfors, H. 2002. Information Hiding - Steganographic
Content in Streaming Media. Masters Thesis (Blekinge Institue of
Technology, Sweden).

4. Hopper, N., von Ahn, L., and Langford, J. 2009. Provably Secure
Steganography. IEEE Trans. Comput. 58, 5 (May. 2009), 662-676.
DOI= http://dx.doi.org/10.1109/TC.2008.199

5. McDonald 1994. Human-Readable 128-bit Keys. RFC1751 (Dec. 1994)

6. Twisted Framework - http://www.twistedmatrix.com

7. The Python Cryptography Toolkit - http://www.dlitz.net/software/pycrypto/

8. Stepic Library - http://domnit.org/stepic/doc/

9. messagebox - http://danmarner.blogspot.com/2008/05/creating-message-
box-with-pygtk-and.html

8

